Two-sided Grassmann-Rayleigh quotient iteration
نویسندگان
چکیده
The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right p-dimensional invariant subspaces of C. Moreover, Grassmannian versions of the Rayleigh quotient iteration are given for the generalized Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian eigenproblem.
منابع مشابه
M ar 2 00 8 Two - sided Grassmann - Rayleigh quotient iteration ∗
The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right p-dimen...
متن کاملA Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA
We derive a Grassmann-Rayleigh Quotient Iteration for the computation of the best rank-(R1, R2, R3) approximation of higher-order tensors. We present some variants that allow for a very efficient estimation of the signal subspace in ICA schemes without prewhitening.
متن کاملTuned preconditioners for inexact two-sided inverse and Rayleigh quotient iteration
Convergence results are provided for inexact two-sided inverse and Rayleigh quotient iteration, which extend the previously established results to the generalized eigenproblem, and inexact solves with a decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising in two-sided methods is considered and the successful tuning strategy for preconditione...
متن کاملA Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces
The classical Rayleigh quotient iteration (RQI) allows one to compute a one-dimensional invariant subspace of a symmetric matrix A. Here we propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. Cubic convergence is preserved and the cost per iteration is low compared to other methods proposed in the literature.
متن کاملConvergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration
The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. In this paper, two methods for the computation of the dominant poles of a large scale transfer function are studied: two-sided Rayleigh Quotient Iteration (RQI) and the Dominant Pole Algorithm (DPA). Firstly, a local convergence analysis of DPA will be given, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 114 شماره
صفحات -
تاریخ انتشار 2010